
Highly Loaded
Infrastructure

Creating a

Based on Amazon Services

to Carry the Capacity During
Sales

For an Online Fashion Store

Case Study

Content

Tools 5

Amazon Web Services (AWS) 6

Solutions 8

Results 23

Contact us 24

Challenges 4

About client 3

2

Ca
se

 s
tu

di
es

3

C
as

e
st

ud
ie

s

figuresClient in

Followers

400K+

Simultaneous Users

10K+

Of Mobile Traffic

70%

Monthly Visits

120K+

An online fashion store that sells women’s clothing and accessories
within the EU. The product assortment of the store is presented

in 17 categories and 1250+ items.

The company actively uses social networks to attract customers.

The client regularly organizes promotions and sales.

clientAbout

Region: France Industry: Fashion

4

Ca
se

 s
tu

di
es

The client is in the middle of migrating the project from Prestashop
to Magento 2.3 Commerce Edition. At some point, they start to pick
a hosting environment, where they consider several options, such as
Magento Cloud and a self-hosted solution. Eventually, after quite a
lot of back and forth, they land on Amazon Web Services (AWS)
and ask us for help with the DevOps part.

 10,000.

Also, the client expects a high traffic load during the
period of sales and promotions. Based on forecasts for
advertising campaigns, they expect that the number of
users who visit the site at the same time will reach up
to We are given the task of creating a server
infrastructure, which can handle the load during sales
and discounts.

Challenges

Team

Project Manager

DevOps Engineer

Back-End Developer

Front-End Developer

QA Engineer

5

C
as

e
st

ud
ie

s

Tools

Amazon Code Deploy

EC2 Instances

Amazon autoscaling

AWS Aurora database, RDS instances

Redis

Full-page cache, Object Magento cache

Elastic Load Balancer

Elasticsearch

Bastion

NFS

Amazon Web Services (AWS) is a subsidiary of Amazon that provides on-demand cloud computing platforms and APIs to individuals, companies, and
governments, on a metered pay-as-you-go basis. In aggregate, these cloud computing web services offer a set of primitive abstract technical infrastructure
and distributed computing building blocks and tools. The AWS technology is implemented at server farms throughout the world, and maintained by the
Amazon subsidiary. Fees are based on a combination of usage, the hardware / OS / software / networking features chosen by the subscriber, required
availability, redundancy, security, and service options.

Ca
se

 s
tu

di
es

6

Amazon Web Service

C
as

e
st

ud
ie

s

Solutions

01

1

Planning stage

We always begin working on a project by analyzing the environment and planning our next steps. We also meet with our key specialists to
outline future architecture.

During the analysis of this project, it becomes clear that peak loads occasionally occur during the year, which means that we face the task
of creating a scalable environment that can adapt to the load both high and low.

One of the critical points of this project is the high traffic that needs, if possible, to be unloaded at the entry point of the infrastructure. It
also requires high-performance content delivery to provide a pleasant user experience. To solve this challenge, we choose Fastly , because
it’s a configurable content delivery network that can significantly accelerate the delivery of content both cacheable and uncacheable — like
product prices and other dynamic and event-driven content.

Apart from that, high-traffic businesses often face the problem of malicious attacks, especially during promotions and sales. Fastly also
filters, cuts off the low-quality traffic, and provides powerful protection against DDoS attacks, which is essential for such projects.

Fastly CDN makes transmission of the content to the end-users more efficient by automatically storing copies at intermediate locations temporarily. The process of storing
these copies is known as "caching." Meanwhile, server locations, in which they are stored, referred to as "caches." Fastly customers specify the origin domains, servers, and
applications from where the original content will be fetched. When a request is made, the closest Fastly cache to the user fetches the content from the origin server, stores it
in the cache, and sends the response to the end-user.

1

solutions

C
as

e
st

ud
ie

s

8

Elastic Load Balancer automatically distributes incoming application traffic across multiple targets, such as Amazon EC2 instances, containers, IP addresses, and Lambda functions. It can handle the
varying load of your application traffic in a single Availability Zone or across multiple Availability Zones.

2

C
as

e
st

ud
ie

s

9

solutions
02

2

Elastic Load Balancer

Besides, the load also needs to be effectively shared
and managed within the architecture; that’s why we
consider the possibility of using several servers on
which Magento can be hosted on. As the
infrastructure becomes multi-server then, we decide
on a Load Balancer , which can easily cope with all of
the tasks mentioned above.

03 Deployment

Further, we think about the deployment phase, which should be
taken into account. The deployment process of the project consists
of the Git client’s repository and the AWS code deploy with
Bitbucket Pipelines, which allows automatically building, testing, and
deploying the code, based on a configuration file in the repository.
As a consequence, commands can be run with all the advantages of
a fresh system inside the containers in the cloud.

04 Autoscaling group

Keeping in mind there are several Magento servers managed by an Elastic Load Balancer and the condition that peak loads occur a few
times a year, there should be a convenient way to add and remove servers when it’s necessary. In fact, Amazon has a suitable technology
address that — an autoscaling group, so the more servers are involved in the group, the higher load they can carry.

05

3

Databases

Also, when working on such a high-loaded project, special attention should be paid to working with databases. They differ from application
servers because they can’t be included in the autoscaling group that easily. We work with the Amazon Aurora database , which suits the
conditions of the project since it’s fully managed by Amazon Relational Database Service (RDS). It automates time-consuming
administration tasks like hardware provisioning, database setup, patching, and backups.

For the project, we select two powerful ones — Master and Slave with a synchronization mechanism between each other. The Master
database server is where the recording process takes place, and the Slave database server is where the reading is coming from. As the
recording is a more time-consuming operation than reading, we plan to separate them to achieve the necessary performance.

Amazon Aurora is a MySQL and PostgreSQL-compatible relational database built for the cloud, that combines the performance and availability of traditional enterprise databases with the simplicity and
cost-effectiveness of open source databases. It’s up to five times faster than standard MySQL databases and three times faster than standard PostgreSQL databases. It provides the security,
availability, and reliability of commercial databases.

3

Ca
se

 s
tu

di
es

10

solutions

Full-page cache (FPC) is used to display category, product, and CMS pages quickly. Full-page caching improves response time and reduces the load on the server. Without caching, each page might
need to run blocks of code and retrieve information from the database. However, with full-page caching enabled, a fully-generated page can be read directly from the cache.

4

Object Magento cache (OMC) is a type of server-side caching. This means the caching is administered at the server level, and isn’t controlled by the end user or a system they use for caching. Object
caching stores database query results that have been loaded. Then, it serves them up faster the next time they’re requested so the database doesn’t have to be queried again.

5

Redis is a fast, open-source, in-memory key-value data store for use as a database, cache, message broker, and queue. All Redis data resides in-memory, in contrast to databases that store data on
disk or SSDs. By eliminating the need to access disks, in-memory data stores such as Redis avoid time delays and can access data in microseconds. Redis features versatile data structures, high
availability, geospatial, Lua scripting, transactions, on-disk persistence, and cluster support, making it simpler to build real-time internet-scale apps.

6

Ca
se

 s
tu

di
essolutions

11

06

4 5

6

Caching

Another important artifact that is typical for any Magento project is caching. First, to improve the response time and reduce the load on the
server, we implement a full-page cache (FPC) and object Magento cache (OMC) . They’re used to display categories, products, CMS
pages quickly. Without them, each page may need to run blocks of code and retrieve information from the database, which is usually quite
resource-consuming. However, with the caching enabled, a fully-generated page can be read directly from the fast cache memory.

The next step in implementing caching is user sessions. The thing is that logged-in users significantly load the infrastructure due to the
Magento specifics of working with open user sessions. The good practice of dealing with this task is to store and work with them separately
from the Magento servers. We select Redis caching service, which allows inserting and retrieving a massive amount of data into its cache
within a short period of time. It can be done easily using mass insertion, a feature supported by Redis.

07

7

Elasticsearch

An important and integral part of any ecommerce
project is providing a fast, personalized search
experience, allowing users to find relevant data
quickly. The thing is that the default Magento search
sometimes requires improvements and doesn't always
provide as relevant search results, and it’s quite
resource-consuming, which pushes us to use
third-party systems. To upgrade it, we use
Elasticsearch , because of its proven performance
and direct access to the APIs.

Amazon Elasticsearch Service (Amazon ES) is a managed service that makes it easy to deploy, operate, and scale Elasticsearch clusters in the AWS Cloud. Elasticsearch is a popular open-source
search and analytics engine for use cases such as log analytics, real-time application monitoring, and clickstream analysis.

It supports natural language search, auto-completion, faceted search, and location-aware search.

7

Bastion is a special-purpose computer on a network specifically designed and configured to withstand attacks. It generally hosts a single application, for example, a proxy server, and all other services
are removed or limited to reduce the threat to the network.

8

Ca
se

 s
tu

di
es

12

solutions
08

8

Bastion

This kind of infrastructure currently needs full security
and minimizing the chances of the entrance from the
outside. For this reason, we pick Bastion with the
purpose of facilitating access to a private system from
an external network. Besides, it has a multi-factor
authentication and provides an extra security layer to
prevent unauthorized administrative access to
systems.

09 Load testing

To understand how the infrastructure is going to perform good enough and be in line with what is required, we usually perform load testing.
Our QA engineer performs the procedure, verifies the ultimate capacity, and gives feedback with the metrics.

A suitable tool for performing the load testing is JMeter9, which examines the server layer and discovers the maximum load a website can
handle by simulating a group of users sending requests to a target server.

We usually combine the output of JMeter with New Relic10 to make the testing performance perfect. It analyzes how the code performs,
indicates the problems on the Magento side, and offers in-depth and robust reporting.

JMeter can be used as a load testing tool for analyzing and measuring the performance of a variety of services, with a focus on web applications. JMeter can be used as a unit-test tool for JDBC
database connections, FTP, LDAP, Webservices, JMS, HTTP, generic TCP connections, and OS native processes.

9

New Relic is a performance management tool that helps analyze and manage application performance, troubleshoot errors, and bottlenecks before they affect your customers' experience.
10

C
as

e
st

ud
ie

s

13

solutions

10 Visualization of the planned architecture

To sum up, we visualize the architecture in the scheme below. We also make calculations of all of the specified tools for the client.

After getting approval of the client, we set up the project execution stage.

11 Execution Stage

We start with Fastly CDN, Elastic Load Balancer, the deployment process with Bitbucket Pipelines, Elasticsearch, and Bastion.

C
as

e
st

ud
ie

s

14

Visitors

Elastic Load Balancer

Internet

Internet

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Quantity of Magento servers

For deploy use:

AWS codedeploy with bitbucket-pipeline

MYSQL

Master RDS db
r5 2xlarge

Aurora cluster

MYSQL

Slave RDS db

r5 2xlarge

Aurora cluster

ELASTIC

SEARCH

EC2 m4 large

elasticsearch

cluster

BASTIONCACHE

Redis FPC

cache m5

2xlarge

CACHE

Redis OMC

cache m5

2xlarge

CACHE

Redis SC

cache m5

2xlarge

Ca
se

 s
tu

di
es

15

solutions
12

 70%
70%

the autoscaling group

The next step of the execution phase is the implementation of the autoscaling group.

We set the following rule: from the moment of promotions and discounts when the average

load on the servers reaches , the system provides a new server to balance the overall

performance. When the demand goes under , the number of servers reduces one by

one, respectively.

At this point, we make a decision to start with 1-2 servers in the autoscaling group on

which Magento will be hosted. We do it this way to test the minimum necessary number

of servers and optimize the client’s costs.

13 databases

Next, we move on to the database servers. After conducting the tests, it becomes clear that one
database server instead of two, is enough, so the client doesn’t have to buy a Slave server and
can save money.

14

11

storage space

Another highlight is that we find a way to optimize our infrastructure to save some storage space
and increase the speed of content loading in the infrastructure. We implement the Network File
System (NFS) media library for storing content that doesn’t need to be duplicated on each
Magento server.

ofOptimization

NFS (Network File System) is a client/server application that lets a computer user view and optionally store and update files on a remote computer as though they were on the user's own computer.
The NFS protocol is one of several distributed file system standards for network-attached storage (NAS).

11

solutions

Ca
se

 s
tu

di
es

16

15 caching

Further, we implement Redis, which works well. However, when we start moving on to the
implementation of FPC and OMC, which should be taken to separate servers to speed things up,
we face a problem. The thing is that based on the plan we choose for the client, the Amazon
internal network bandwidth doesn’t allow transferring the info from the cache servers to the
Magento servers quickly enough. Going to a more expensive plan with Amazon doesn’t make
financial sense, so we should find a workaround here. After a quick brainstorm with the team, we
land on leaving one cache server for the sessions (Redis) and moving FPC and OMC to each
Magento server in the autoscaling group to achieve the necessary performance eventually. As a
side effect, we save the client’s budget by reducing the number of Amazon services without loss
of efficiency.

ofOptimization

16 Performing load testing

The large and significant part of the project execution
stage is load testing, which is held throughout the
entire implementation. It’s an iterative process of
putting demand on a system and measuring its
response. The process of load testing consists of two
parts — the server and application layers. The testing
algorithm contains the following steps — we perform
the load testing, then we get the metrics, which report
the capacity that it can carry. After that, we give
instructions to the server and application parts and
fine-tune the infrastructure.

It always makes sense to get intermediate results during the
implementation of big tasks. While conducting the tests, we get
intermediate results. An example of the dynamics by the number of
requests and periods can be found in the New Relic screenshot
below.

 7,635 users.

We perform the test on 10 Magento servers
in the autoscaling group and reach the
point of It allows us to
understand the maximum capacity that the
system can carry at a particular moment.

solutions

C
as

e
st

ud
ie

s

17

Ca
se

 s
tu

di
es

18

1,000

0

2,000

3,000

4,000

5,000

6,000

7,000

8,000

6/3

12:25

6/3

12:30

6/3

12:35

6/3

12:40

6/3

12:45

6/3

12:50

6/3

12:55

6/3

13:00

6/3

13:05

6/3

13:10

6/3

13:15

6/3

13:20

app / ProdLB / 5ca4f63c7eea6ddc

 (Count)Requests
Statistic: SumTime Range: Last Hour Period: 1 MinuteCloudWatch Monitoring Details

C
as

e
st

ud
ie

s

19

During the load testing, we follow the common user scenario:

homepage > several category pages > filtration on the category pages > pagination on category pages >
search > open product detail page > add a product to cart > open login page, and login action > visit cart
page > checkout page > log out.

Then we analyze the summary reports from JMeter, which show all the data for each stage of the scenario.
There we can find the bottlenecks and fix them in certain places:

17 Optimization results

As a result, we introduce a range of changes into the project architecture:

land on one database server instead of two

replace three caching servers with one

move the static content to the separate server by implementing the
NFS media library

18 Visualization of the optimized architecture

Eventually, the system turns out to be even more optimal than
planned. This is how it looks.

C
as

e
st

ud
ie

s

20

C
as

e
st

ud
ie

s

14

Visitors

Elastic Load Balancer

Internet

Internet

Magento servers in auto-scaling group

#1 #2 #3 #4 #5 #6 ...

For deploy use:

AWS codedeploy with bitbucket-pipeline

MYSQL

Master RDS db
r5 2xlarge

Aurora cluster

ELASTIC

SEARCH BASTION NFSCACHE

Redis FPC

cache m5

2xlarge

CACHE

Redis OMC

cache m5

2xlarge

Results

C
as

e
st

ud
ie

s

10,000 simultaneous users

Made it possible for the online store to work well when it’s loaded
with

01

Completed the project from start to finish in a month02

Assisted the client’s team with the extra development hands to work
on the AWS configuration and meet their deadline

03

Described all the processes, sent instructions, and trained the
client's team so that they can smoothly work and support the project
without our engaging in the future

04

Improved the project infrastructure, while working on it05

Found a way to optimize the project pricing for the client and
decrease the costs

06

23

C
as

e
st

ud
ie

s

C
as

e
st

ud
ie

s

Let’s talk

about your business
Choose the most convenient way of communication
for you — write an email or contact us in one of the
messengers. We’ll discuss your project — provide
individual calculations and offer our suggestions on
how to upgrade your business.

Email: info@magecom.net

Website: magecom.net/contacts/

Phone: +44 74 9143 5563

Global
Your

Partner
Ecommerce

https://join.skype.com/invite/gCjzhFn0y0ma
http://m.me/magecomagency
https://t.me/Magecom
mailto:info@magecom.net
tel:+447491435563
https://magecom.net/
https://wa.me/447491435563

